Anti-HSP70B (Plant) Antibody

Rabbit Anti-Algae HSP70B (Plant) Polyclonal

Catalog No. SPC-315

0 out of 5 based on 0 customer ratings
Species Reactivity , Alg , Pl
Applications WB IHC ICC/IF FCM IP

USD $308.00

SKU: SPC-315 Categories: , .

Next day delivery if ordered before 12pm PST

Clear

Overview

Product Name HSP70B (Plant) Antibody
Description

Rabbit Anti-Algae HSP70B (Plant) Polyclonal

Species Reactivity Algae, Algae (Chlamydomonas reinhardtii), Algae (Desmodesmus subspicatus), Moss (Physcomitrella patens), Plant
Applications , WB , IP
Antibody Dilution WB (1:10000); optimal dilutions for assays should be determined by the user.
Host Species Rabbit
Immunogen Species Algae
Immunogen Mature HSP70B protein expressed with N- and C- terminal hexahistidine tags in E.coli, purified with Ni-NTA
Conjugates Unconjugated
APC (Allophycocyanin)
Overview:

  • High quantum yield
  • Large phycobiliprotein
  • 6 chromophores per molecule
  • Isolated from red algae
  • Molecular Weight: 105 kDa

APC Datasheet

 APC Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 650 nm

λem = 660 nm

εmax = 7.0×105

Φf = 0.68

Brightness = 476

Laser = 594 or 633 nm

Filter set = Cy®5

 

  ATTO 390
Overview:

  • High fluorescence yield
  • Large Stokes-shift (89 nm)
  • Good photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Coumarin derivate, uncharged
  • Low molar mass: 343.42 g/mol 

ATTO 390 Datasheet

ATTO 390 Fluorescent Dye Excitation and Emission Spectra Optical Properties:

λex = 390 nm

λem = 479 nm

εmax = 2.4×104

Φf = 0.90

τfl = 5.0 ns

Brightness = 21.6

Laser = 365 or 405 nm

 

  ATTO 488
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 804 g/mol 

ATTO 488 Datasheet

  ATTO 488 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 501 nm

λem = 523 nm

εmax = 9.0×104

Φf = 0.80

τfl = 4.1 ns

Brightness = 72

Laser = 488 nm

Filter set = FITC

 

 ATTO 565
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Good solubility in polar solvents
  • Excellent solubility in water
  • Very little aggregation
  • Rhodamine dye derivative
  • Molar Mass: 611 g/mol

ATTO 565 Datasheet

 ATTO 565 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 563 nm

λem = 592 nm

εmax = 1.2×105

Φf = 0.9

τfl = 3.4 n

Brightness = 10

Laser = 532 nm

Filter set = TRITC

 

 ATTO 594
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 1137 g/mol

ATTO 594 Datasheet

 ATTO 594 Fluorophore Excitation and Emission Spectrum Optical Properties:

λex = 601 nm

λem = 627 nm

εmax = 1.2×105

Φf = 0.85

τfl = 3.5 ns

Brightness = 102

Laser = 594 nm

Filter set = Texas Red®

 

 ATTO 633
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Stable at pH 4 – 11
  • Cationic dye, perchlorate salt
  • Molar Mass: 652.2 g/mol

ATTO 633 Datasheet

ATTO 633 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 629 nm

λem = 657 nm

εmax = 1.3×105

Φf = 0.64

τfl = 3.2 ns

Brightness = 83.2

Laser = 633 nm

Filter set = Cy®5

 

 ATTO 655
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Excellent ozone resistance
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 634 g/mol

ATTO 655 Datasheet

ATTO 655 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 663 nm

λem = 684 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.8 ns

Brightness = 37.5

Laser = 633 – 647 nm

Filter set = Cy®5

 

 ATTO 680
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 631 g/mol

ATTO 680 Datasheet

 ATTO 680 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 680 nm

λem = 700 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.7 ns

Brightness = 37.5

Laser = 633 – 676 nm

Filter set = Cy®5.5

 

 ATTO 700
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 575 g/mol

ATTO 700 Datasheet

 ATTO 700 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 700 nm

λem = 719 nm

εmax = 1.25×105

Φf = 0.25

τfl = 1.6 ns

Brightness = 31.3

Laser = 676 nm

Filter set = Cy®5.5

 

  FITC (Fluorescein)
Overview:

  • Excellent fluorescence quantum yield
  • High rate of photobleaching
  • Good solubility in water
  • Broad emission spectrum
  • pH dependent spectra
  • Molecular formula: C20H12O5
  • Molar mass: 332.3 g/mol

FITC-Fluorescent-conjugate

FITC Fluorescein Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 494 nm

λem = 520 nm

εmax = 7.3×104

Φf = 0.92

τfl = 5.0 ns

Brightness = 67.2

Laser = 488 nm

Filter set = FITC

 

 PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation

PE/ATTO 594 Datasheet

PE-ATTO 594 Fluorophore Conjugate Excitation and Emission Spectra Optical Properties:

λex = 535 nm

λem = 627 nm

Laser = 488 to 561 nm

 

 PerCP 
Overview:

  • Peridinin-Chlorophyll-Protein Complex
  • Small phycobiliprotein
  • Isolated from red algae
  • Large stokes shift (195 nm)
  • Molecular Weight: 35 kDa

PerCP Datasheet

 PerCP Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 482 nm

λem = 677 nm

εmax = 1.96 x 106

Laser = 488 nm

 

  R-PE (R-Phycoerythrin)
Overview:

  • Broad excitation spectrum
  • High quantum yield
  • Photostable
  • Member of the phycobiliprotein family
  • Isolated from red algae
  • Excellent solubility in water
  • Molecular Weight: 250 kDa

R-PE Datasheet

 R-PE Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 565 nm

λem = 575 nm

εmax = 2.0×106

Φf = 0.84

Brightness = 1.68 x 103

Laser = 488 to 561 nm

Filter set = TRITC

 

AP (Alkaline Phosphatase)

Properties:

  • Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
  • Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
    • Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
  • Molecular weight: 140 kDa
  • Applications: Western blot, immunohistochemistry, and ELISA

AP Datasheet

HRP (Horseradish peroxidase)

Properties:

  • Enzymatic activity is used to amplify weak signals and increase visibility of a target
  • Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
    • Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
    • Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
  • High turnover rate enables rapid generation of a strong signal
  • 44 kDa glycoprotein
  • Extinction coefficient: 100 (403 nm)
  • Applications: Western blot, immunohistochemistry, and ELISA

HRP Datasheet

BiotinBiotin Conjugate Structure

Properties:

  • Binds tetrameric avidin proteins including Streptavidin and neuravidin with very high affinity
  • Molar mass: 244.31 g/mol
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Biotin Datasheet

Streptavidin

Properties:

  • Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
  • Molecular weight: 53 kDa
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Streptavidin Datasheet

Properties

Storage Buffer Lyophilized rabbit Antiserum. For reconstitution add 100 µl of sterile water.
Storage Temperature -20ºC
Shipping Temperature Blue Ice or 4ºC
Purification Rabbit antiserum
Clonality Polyclonal
Specificity Detects ~70kDa.
Cite This Product Rabbit Anti-Algae HSP70 Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-315)

Biological Description

Alternative Names HSP70 1 Antibody, HSP70 2 Antibody, HSP70.1 Antibody, HSP72 Antibody, HSPA1 Antibody, HSPA1A Antibody, HSPA1B Antibody
Research Areas Cancer, Heat Shock
Cellular Localization Cytoplasm
Accession Number XP_001696432.1
Gene ID 5722220
Swiss Prot A8HYV3
Scientific Background HSP70B (heat shock protein 70B) is a nuclear-encoded, chloroplast-targeted chaperone of the HSP70 family. It is the major HSP70 in the stroma of Chlamydomonas chloroplasts. It interacts with HSP90C, CGE1, CDJ2 and VIPP1 (1-3). It has been shown that using Chlamydomonas reinhardtii as plant model organism the alga encodes a HEP homolog (termed HEP2) that is localized to the stroma (4). HEP2 is expressed constitutively as a low abundance protein with an apparent molecular mass of ~21 kDa. In cell extracts HEP2 interacts with HSP70B in an ATP-dependent fashion. Coexpression of HSP70B with HEP2 in E. coli yields high levels of CGE1- binding competent HSP70B, which also displayed ATPase activity (4). Inactive HSP70B was more prone to proteolysis than active HSP70B. Although inactive HSP70B interacts with HEP2, it is not activated. Active HSP70B remains active for 48 h in the absence of HEP2, suggesting that HEP2 was not involved in maintaining HSP70B in an active state. However, it was found that some HSP70B expressed as a fusion protein with an N-terminal extension was activated when HEP2 was present during cleavage of the fusion protein, suggesting that in vivo HEP2 might be required for renewed folding of HSP70B after transit peptide cleavage (4). Looking for more information on HSP70? Visit our new HSP70 Scientific Resource Guide at http://www.HSP70.com.
References 1. Schroda M., Vallon O., Wollman F.A. and Beck C.F. (1999) Plant Cell. 11: 1165-1178.
2. Schroda M., et al. (2001) Plant Cell. 13: 2823-2839.
3. Liu C., et al. (2005) Mol Biol Cell. 16: 1165-1177.
4. Willund F., et al. (2008) J. Biol. Chem., 283(24): 16363-16373.

Product Images

Currently there are no images for this product

Product Citations (0)

Currently there are no citations for this product.

Reviews

Reviews

There are no reviews yet.

Be the first to review “HSP70B (Plant) Antibody”